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ABSTRACT

W

A model for an ideally polarizable interface is proposed where the
two sides of the interface are described by two interacting classical
One component plasmas of different neutralizing background densities
separated by an impermeable membrane.h‘rhe statistical mechanics of this
system is solved exactly in two dimensions at the reduced temperature 2. - |

The one and two body distribution functions, the potential drop,
the differential capacity and the interfacial tension are computed.
The main feature of this model is that the potential drop and not the
surface charge appears as the natural external variable.Several sum rules:
are discussed,such as the screeniné'theOtems for multipoles, the contact
theorem,énd Lippmann‘s eﬂuation.' .

A general thermodynamic argument shows that these sum rules remain

valid in three dimensions and for any value of the coupling parameter.
SN\




* I INTRODUCTION

In recent yéars there has been much interest in the statiséical mechanics
of inhomogeneous charged systems such as the metal electrolyte interface.
Since the real interface is a very complex system,most of the effort
has been directed to understanding model# in which the metal side is
an ideally smooth,hard, charged sﬁffnce,with or without metal boundary
conditions (image forces).Accordingly , the interface is not treated as
an wholy integrated system, in which the metal and the eléctrolyte are
both treated at the microscopic level,and this is surely a serious
shortcoming of these models.[1]

For instance, if one considers the inte:faée between a ligquid metal
(34g or Ga) and an aéueous electrolyte splution'(e.g. RCl ) ,it appears
that the main contributioﬁ to the'inte;facial tension is coming from
the interaction between the metal particles.Since, from Lippmann’s
equation, -the differential capacity of the intetface is the second derivative
of this surface tension with respect to the applied potential, it is

very likely that a sizeable part of this capacity is also due to the
response of the metal. p
Indeed this effect has been estimated recently by a model in which

the metal is a gquantum mechanical jellium [2,3],2nd more recently
2 jellium interface with an ion-dipole mixture has been consiééred[d,S].
However, this last model,albeit realistic, is very difficult to handle and

we are far from an accurate numerical solution of the statisticaf mechanics
of this model.We must rema;k that even computer simulations cannot be
performed for such a complex case because of the quantum nature of

the metal,and becauié the discrete solvent of the ionic solution

will require a number of particles that is too large even for modern

computers.,




N

It seems therefore interesting to study simpler models tha: may
not be as realistic , but still treat the whole interface
.at the microscopic level ,and are more tractable mathematically.In particular

we would like to mimic two different situations that occur in electrochemistry

a)the non polarizable 1nte:£ac&,in which the potential drop across
the interface is given py Nernst’s equation.The classical example_
of this case is the calomel e.ectrode and its behaviour is explained by
the continuous exchange of charged particles between the two sides of

the interface.

b) the polarizable interface, in which the potential
drop does depend on the charge distribution at the interface.
The classical example of thig case is the mercury-fNa(ag) interface.

For low vgldes of the potential drop across the interface H

a change in the externally applied potential will not simply produce
an increase in the ohmic current intensity,but it will polarize the
surface,producing an excess surface charge on the metal and in the solution.
Above a certain value of the potential however chemical reactions occur ani
electrons flow across the interface: At this point the polarizasle eléctrode {y
becomes umdolarizable ,and behaves much like case (a).
In the oresent wcrk we consider a z-diménsional model in which the i
two sides of the interface are represented by classical,one component plasmas .
(OCP) with different background densities.Of course this is not a realistic
representation of the met;l eiectrolyte interface,but this model has the
feature of being exactly,snalytically sclvable :Jancovici and coworkers[6,7,8] !
have shown that at the special value of the plasma’coupling pﬁtamete:

(or reduced temperature ) - =2,the partition function and all




the correlation functions of the 2-dimensional OCP can be obtained exactly

On the other hand, as we shall see below,this model reproduces some
of the main features of real interfaces and may be useful in providing
insight about exact relations such as sum rules and the subtle screening
behaviour of Coulomb systems([9]. .

Recently a solution was:fbund for such a model of the interface
where the charged particles (ions) are free to move everywhere
{10,11).1In this case the potential drop across the
interface depends only on the difference in the chemical
potentials of the bulk phases, and any surface charge distribution is
perfectly sc:éened by the.mobfle ions, giving no cont:ibution'to the
potential drop.Clearly, this model mimics the behaviour of the non
polarizable electrode.

In.thg present paper we present a generalization of this model

which m;gics the behaviour of the'pblatizable interface.Por that purpose

.we introduce an impermeable membrane between the two media;dhich prevents the
ions from moving across the interface,while allowing the electrostatic
interactions among all ions and background charge.Indeed a completely .
impermeable membrane is unlikely to exist in nature, and there is always some
smwall but finite current which leags across the interface.In a limited range
of applied potential,howeve:,.a syséem.like Hg-FNa(aq.) ,can be considered

as ideally polarizable,because the leakage current is extremely small.

We must point out that in real systems, the concept of an. ideally .
polarizable electrode does not imply the existence of a zero width R
mathematical surface ,bﬁt there could be 2 region of limited extent where
all particles could coexist [12].

We shall not consider this case here because it is more complex than

the former one.




In section 2 we describe the model and the method of solution.

Section 3 is devoted to the discussion of 1 and 2 particle denéity
functions, and related sumr rules.In Section 4 we compute the

total potential drop across the interface, and show that in our model
this is indeed the natural external variable,while the surface

charge is calculated by means of a closed formula from it.In this
sense our model differs frpm most of the literature, where the charge
is the externally fixed variable and the potential drop is calculated
fron it.The thermodynamics of the system is discussgd in Section 5 and
pertinent sum rules are given:in particular Lippmann’s equation

and the contact theorem for this case are deduced.The last section

is devoted to a brief discussion of the results.

A short communication of these results has been presented elsewhere[l3].

II- MODEL AND METHOD OF SOLUTION

Following the method of Jancovici [8] ﬁe start with a system
of circular symmetry.In our case it consists of two concentric circles
of radii R, and Ry .
The inner region (0<r<R,) has background charge density -eel/. ,where
e is the elementary charge,and contains N4 particules of chaége e,
This circle is also the impermeable surface that prevents the
charged particles from changing sides.

We want to allow for an excess charge density -ec‘4i along the wall

then we must have

2
N4= QA‘R“ - 29"'24 (2.1)




The outer region (R_‘<r<R'_) has background density -eo&,{: seXxcess

charce density et4 and contains N, particules of charge e.fence

M

= 2, R -RI) + 208, (2.2)
the system is thus globally neutral.The thermodynamic limit is obtained
letting the number of particles and the radii go to infinity with o, &,

and 0O constant., |
The plasma coupling parameter is r‘=/3¢‘= 2 where (3 =) /KT is the thermal_
Boltzmann factor and T is the temperature.
The Coulomb potential between two particles at a distance r is

rir) = - tﬁ%\‘ where L is scme scaling length.

The first step is to compute the total potential energy of

the system. We £ind

N
VeV et fo 2 hIGHE - « Z (st -R2) + ¥, 2—_ (=R

2 i>g ¢ izNet
N . .
»_(«.-u;\Rf :‘Z”m £ (..‘/RS } e

where -r: is the position of ion i N=N#N and V,is a constant background term
- el ] LY Y 2t - 4
Vo= £ @O/ (&R 240 T0R, + LR, R, 4 LR,
2 L P L 4
+ "g (R| Rg - R‘A - 3Rt./'\ \ (2.‘4\
Note that the excess charge density eo does not appear explicitly
in (2.3) and (2.4). ’
In computing the canonical partition function, the angular integrations
can be readily performed expanding a Vandermonde determinant [7,8]

and we get
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where (_? is the permutation operator of all N particles.

This can be written

2 =e m\Z{F (Tf-' tae! -.z(pa\T /_‘ tnel -zc.--e\

nze 'R’t”a""\

where n, = n q-(dg-“\ﬂ‘ (2.¢)

)
and ? is the permutation operator that exchanges the ]-%els {0,-'.\14 -1}
with labels {11 N=1} in all possible ways.
Introducing the functions
' Rt 2
p'(n) = <=y G, <R))

"\
and ' (2-?\

o «R’ . .
CP ) = [ Y("‘*‘ Rz\ - Y("z“":‘(aRq\]

]
where

dt &" oR"("g""\

R,"
\((""IR:\ = .4 -* ".Ju.

is the incomplete gamma function,we get

- V; N ca’
Z = e A TT ; J [gP‘(e\ S eee P W) E AR P w-1\]
This can be written in a more convenient form factonzmg the term (2.8
W=y
3
I\P(ﬂ-\ gw gP(u\ .
. qe £ind
o r—
ZN = ZN —_ (2.4)
where .
N-l
L ] - - ' w
—_ Z,, = ’T c?(vn !’IM ? ~\ (2.10)

and W+ is the generating function




~— Na N N, =l N-t
= 44 Z Z Xea Z > X0 X
nzd m: Net X (™) na=d LA LI (SNl mem -7(('":\7(("‘1“
N,=-2 N-2
+ > > KON X+ K(ryr 2\
here na4,n.zn JPsfy MWl m *™ Pyt ™y X(m.\ X(m,+ I\ .XC"’;”'\

XY = ‘Pﬁ9"/44>(u\

In (2.11) it appears that in the lim1t Rz Ry ->00, the dominant values
of the arquments of the summations are those with indices close to Q& -
The incomplete gamma function can be expanded in this limit using the

asymptotic formula [6)

r o a®) = 27 €t [agety + o)l )

F3
where
& :' le't_n
in DA
d 13 = 2 3
an A enjc( \ = JC e ehs

is the complementary error function.

This yields,after some manipulations

XEN = XE o4\
where

Y
XEN= m e( ) _erfe (mé) (2.3

and e 125: - Q:JC.G-b\ | |

The deviations of t—4 £from unity are due to™surface®contributions.
In a first approximation,we can simply neglect these.contributions.
This will be a mean field approximation (4FA).The neglect of the

H
variation of the indices in the computation of w3 constitutes a second

apgnmdnntﬂmxwhnﬂxwixlhe found to be surprisingly accurate.




2) The mean field apptoximation (MFA)

TRAAS Gans D IS e ),  GomE

Since EE =] we have

w-a We

EN: Z; = g-{s\, " I[ ¢(ﬂ.\ [{ ‘_P(n\ R

as W,
This approximation has a physical meaning: It is clear that

°
that ng is the partition function of the uncoupled system where one
neglects the correlations of the charge fluctuations between the two
sides of the interface.In this sense it is a bona fide mean field
approximation.The system is the superposition of two subsystems:The inner
OCP enclosed by a ring of radius gtwith charge density gg%%
and the outer OCP enclosing the charged ring of radius R4 and charge
density -GO‘/': .

These cases have been already solved in the literature[8,1i],s0

that we merely gquote the results for the partition function and the

one body density.For the inner circlé'subsystem
. N -' -
2 - 4 jJ-:'ﬁ ~[AVe N A e
v, = — e = e [ n 2.1
4 M.! '/'.o ‘P(\ ( \
where Vr . is the constant background term

° _ .2 e : 1Tl
Vi = "e'z- [Nl f"'R-n + f;:- R' J (2.[‘\
and for the outer ring subsystem
. N
A4 «K, =f3V, - V.
?Nz - T| J'- l¢ {& 3 - e P t gP Q‘\ (2. l?\ )
t 34 ’&‘"INI "3 4 ..

where 4

P 2 y 2ot 2 plat ok &
Ve g (N-GRDRR, ¢ alRI TR, + £ (RIR] - Ry YA
and the narticles have been relabelled fronm {O,Nz-l} to {QL,N-I}.

It can be easily verified that ° o |
e_f,.v, _ e-fa(\/. +V,°

(2.19)




hgnce
Z, = Z, e (2200
In the limit of a'blanar interface (32,R ->00) , the corresponding one
particle density profile is [8,14]
4 11. L4 “P [-(t #ﬂ&:.\ ] AP x P-)
e q-r
o . erfe(-&
JaoB ) 2, §eCe) (2.21)
L 1
2y f enp (¢ "‘m‘\]-ll— X >o
~‘;- -Ti%, erSc (-F)

with origin of coordinates at the wall (x=r-R,).

In two dimensions r =2 corresponds a somewhat weak coupling
for the bulk ions,s0 we can expext that this mean field approximation
will yield sensible results for not too large surface charges.

We think that for any realistic model of the interface this will be
a first approximation.If we also neglect the contributions of the¢hetaluside
(say, the RHS of the interface), then we will recover a model of the interface
similar to the one discussed in most of the litetatute(the'brimitive”electrodc
b) Second approximation.

A better,perhaps not as transparent physically,approximation
can be obtained by neglecting end terms in the summations (2.1l1l).

Using the identity

2L

r— iz} ¢ ' Jed (a4
‘s can be written

v Ny, n,-1 v-l , N
P z: Z xe\ L ) Xe X0
ned  maiel X ns2, fed  me Mo, mezmet X0 KM

“‘ 'n.‘4 ,’l"' N-2 ,"-. '“

. - } XEIXONKED )

n.ss’ ﬂzlt'ﬂ’.l -~ :vlol LN q..llg Sm 0! X(Q'\I(Mo X("_ﬂ

which shows that the terms neglected by extending the sums at the ends

. of the intervals are small (see(2.13)).Then we write

R |




. . Ny et : !l
= A0 - XN K
S P22 =
el MmaNet '_X(M‘\ Nl ne h."ol ~eme X(M,\ 7("';\
Na, el n,.l N .. .
. > 7 | XEAXOAKEODN L. (2.28)
fal, 231,081 maN el , mamol, o, mel X‘(‘"-\J(("‘:\X("‘s)
In the limit N, =>00 , the sums can be replaced by integrals over
the new variable - t= _45::23_ ‘and using the formula
& 8. z”_' : . . ) y
’jodt.'_l dz, - .{ dz, fc;;\;f(r‘\f(g'\.... &) = .N"_' [-[f(g)dg]
wve get o :
— _ .
Do~ 4 WKK L (o kY @.u
Qﬁ!“- (z{)‘ * eees L2
where : A |
vt
Ke2 j -ﬁ'_ and K / I(E\Jl- (3. 25—\
o X&) . e,

thch can be recognized as the expansion of the modified Bessel function

T, (al¥ F&.',‘z\ [1s1.

Asymptotically
- 268, T Ky,
oo~ Z )

(hm Vi, T )

so that
H 2
V, - VN, .
#e shall discuss this interesting approximation below.

<) Bxact solution. .

e Gsmmp e e

Ingtead of using (2.11) to compute E%‘the exact partition function

of the coupled system,we could represent it in a much more compact form

‘using a device similar to 2 grand canonical ensemble calculation.Consider




nbw that all narticles are indistinguishable and can move freely
throughcut the entire system,but assume that the particles of ﬁhe inner
region have a fugacity %_ different from that of the outer region,which
we take as the reference and set it to the value of 1.

It is straightforward to see that the partition function ng is the

. N, . .
coefficient of i}‘ in the polynomial

N-{
Z(s\ I " 77 [}f‘(n) + P ] (2.2¢\

hzo

which can also be written

M'
Zar= 22, /I [oexe] [T [ S/ * 11 229

Nz N+l

Using the theorem of residues, we finally get

o dy TF <
St 43 T (xey L T [xeV'3 o] 2a0)

hay ns Nt
which can be evaluated asymptotically by the method of steepest descents.

The path of integration is a circle centered at the origin.

Fefine
Y(},\‘ Z: {n [X(*\g +1] « Zn-:w: fo [ XY %u] (2.31)
then
— 462
o= A4 el dy (2.2

2 z’

The saddle ?oint is located at the positive real 3~axis .The location

of the saddle point is found by solving the eguation @

e e —— i i o e



WR s 4 ) o x Y 4

i 3'0 ney n) + s N4 . N
3 X + 3, REMSC Xemes, 0.59)

Taking again the limit of an infinitely large system,and changing to
:.
the variable t = o R\ =

.
this eguation becomes

-/ XA o / S 4 (23¢\

For m=1 we have X)) = Yy
so that ; =)= 3(,. -4

and 7> (=0)*1.In the general case this equation must be solved numerically

for given values of the surface charge density eo”

Now we take 3: 5 uP[iG\ and then integral (2.32) yields
(-] .

~ — .35 )
3‘ " 0 yu(s.\ @ 3

where

Y& ~ R [ / f 32X 4 _/ £ &LZ(_(E\ k] (236
(&Y Ty,
Equations (2.9),(2.35) and(2.36) are the exact answers for the

partition function in the fully coupled case.
As one would expect in the asymptotic limit of a large systen, ‘fn.a
ie proportional to the™surface® of the interface.Hence the Helmholtz
free energy of the coupled system differs only by a su;face term Af’f:m the

free energy of the uncoupléd system:

Af’ - —.ﬁT ‘ﬁm, _f.‘— 61. E:)
R,~>oe =R,

%
"imffﬂaym& fu 304 XB
" -'-/: X® *‘[m, i ]

(2.39)




This eguation gives the thermodynamic properties of our model:It
will be discussed in detail in section 5. )
A very good approximation of the exact solution of the saddle point

equation (2.34) can be obtained if we assume that

XEY > 2, for £ < 0‘(3.{“
XEY << 2. for £ > F/d.

and expand in the small variable xa/a or 3./1(*\ in (2.34) .We find to first order
]

(2.33)

p AR LA 239)
Ky
where K, anrd Kz are defined in (2.25).The same procedure applied to (2.37)
yields
s 2 r""
Af = = g—i J-2—“‘| le2 Q"‘OX,

But this is also the result obtained directly from (2.27) .H.ence this

approximation is strictly equivalent to the one of subsection (2-b).

3.DENSITY PROFILE AND PAIR CORRELATION FUNCTIONS

The same methods used in obtaining the partition function can be
used in obtaining the one and two body correlation functions.
a) Density profile.

From equation (2.28) we find that the density profile is for r<R

Wal frat) t
-l (reAa
s i z : e A (3.1
o 3'( nse M=
Nt
where Q”_. is the coefficient of }' in the polynamial BLZ\
t

Hence, 2after some manipulations,we get




;
1
il Nz4 2irc 5 ":XO‘\ j
!
where 4 _d, (rz_ R‘z\ !
jC ) = (4 n g

net v

N
PO :'{ '_;‘_.._ Z £ L j‘{ dr X&) ey(z’\ (3.3

S R
where :
fz ‘ z(rz R‘\ rin; ( . \ '
] = —_— z h +(&q~d\R,
~ <Pz(ﬂ\ R."("z"‘\ , " *E o)

In the plane interface limit we use again the asymptotic expansion
of the incomplete gamma function and replace the sums by integrals over
t .The asymptotic behaviour of the contour integrals is again obtained
by steepest descents.The saddle point is located at the same position S°
as before.

After some manipulations we obtain
00

e 3 / exp f-(f'“‘r{"u\j d& X Lo
h 9. 7 oo 5. ng(-é-) +me ",')perge@ R\

PO = { N ' (3.¢)
uo [ _epl-@adBll 4 s

\ r% L mo\gc(mﬂ + g,, ")" erfel k)

which can be written in a more compact form

+00

f(%\ =z % q ) exp (~ 2Ex1T) cﬁ" .
T Zoo Lo . t,- 7%
Sz e Chp\ e + gzergc(g e

(3.5)

where




Ff‘ ‘ “__-“--'--.-...'-......".-.-ll.-.-.-7..---'—‘---.--_-‘

X 30 Q‘P (‘z“lj“\ , X. <o ”

g(x) = 3 (3:¢ )

ff erp (- 24, %) , X>0

' Although the physics of the present model is not gquite the same as that
| of the pex;:meable membrane [10,11] ,it is interesting. to note that —we

recover the density profile of this case when 3‘-1.111 this former case

the density of mobile ions was always continuous.In the present model, however,

there is a discontinuity in the density .ptofile at the interface: [

469‘
f(p\ = 3° (3.?\

For m=) (e(- °l = o ) these contact values can be computed explicitly

-

ﬁ‘ )= %. Ft(,O\ = 3‘ ’F"'S. . (3.2 | "

'n‘.’go

For m=1 and =0 one obtains the expected result

P(x)= constant

which means that the system behaves as if there would be no wall.
The’ approximation of subsection (2~b) is of interest because the . ﬁ

density profile P(x)is the sum of the density of the MPA plus a perturbaticn.
Using (2.38) we £ind

.

| P = N % + Af(x\ | (s.e\ o
vhere (sz‘ Vi, ErxiE o\ \'l., ﬁg . :"' '2:‘. . m erfeind) ] ~(reri,)
J & erfe ) IerJ~ Nk
&f("\ , %<0
Kk -1t '(“ e”‘ o \1, e‘{' .
db & | -(mbsxv2d
% B [ S o g e
| where P °¢\ is given by (2 21) . Biad [chc.(ml-\] §

. X>0
The integrals in (3.5) and (3.9) have been computed numerically ’

‘ for the can- d-l, ol -4 and 0¥ ==].The denlif.y profiles are shown

in figure 1 together with that of the uncoupled system. Indeed lpproximation
of subsection (2-b) (or 3.9) is very accurate.




The electroneutrality conditions on each side of the interface imply:

J[r(x\- .'%].!x = -../n[f(x\-%-]g,‘ = ’1':: (310

In Appendix A we show that these relations can be derived from
(2.34) ,the equation for the saddle point.This constitutes an alternative

way of calcul_ating é’ from the suface charge density e¢ .
The approximate solution of section (2-b) satisfies this condition exactly.

b) Twc body correlations.

To discuss the 2-body correlation functions we need to consider
the three cases of both ions on side 1,both ions on side 2 and one ion
on each side of the interface.Since the derivations are very similar,we shall
give the details for the last case only
It will be cenvenient to use a complex number representation of the pcosition

of the ions (Janccvici [8)) z-x+'iy~r' exp(if) .Then similarly tc (3.1 ) we have

| — --t(r"'-R"].--t (=R ' R"
P A B O T T )
’ —— -
Vet Z, 4mao .2 152 4% (-f?&.-\ ‘?‘1-1
w,-! - | :
where 6“ -l is the ccefficient of S_' in the polynomial (3-“\

2(3-) : )
[3 @)+ Y01 3 P + '] |

Pfter some manipulations we get the following expression for the

truncated two body density:

[ICRARN CRARF TN

- _ A . - e"‘l("u"“ut ]"“a("t"e\‘\ z( moam ‘(‘l“'\“'z
SRR~ 7 pem ' 2, R (-‘!;.L
eyg\ xé\f"

L bd
Ar f g {3 +X(€ﬁ\][ %*.X("‘"‘]

In the plane surface limit ,again by the method of steepest descents

we Obtain

(3-1) -




? ez 2 2

TR [ P o]

F_r()‘,,x,'j) ] -%3 *ﬁn\.

I eo -4 <, (I',’- R!z ) - z"",g(r:" th) n an, / 2

where 5 is the same saddle point as before.Using the expression (2.12)
for the mcomplete gamma function,ard replacing the sum by an integral

over t,we find

ﬁr(x. 1 Xy ';'\ ‘d.

. 2
_2(“.,“;*‘}:\ +% . - (‘(X,Hfz - 3\‘&0 .
¢ 2t (3.4)

4 ¢t m
% Saujc LBl s me agg(m\-\
where Y=Y, -Y .In the general case we have

2*-;/4y

Zoo 3o ede (-L')e e ajc@d')

- é‘(X,#ﬁg“"s\Jz:' 2

ﬁ,.(xl ,X,'i\ - = 30‘\ 3(‘1\

(3.15)
where g(x) is given by (3.6).

This result beccmes identical to the one for the permeable membrane{l0,

when 3. =].By an analysis similar to that of Jancovici (8,10] we can see
that in the exact soclution there will be no iong ranged correlations alcng
the interface: ﬁr decays exponentially as a function of y.In -the MF2 however
the pair correlation function along the interface will decay only as 3-2
because in this approximation each side of the interface is like an OCP
face an ingsulating ,charged surface [8].

Our results are in accordance with Jancovici’s conj'ectute that short

ranged decay of the pair correlation function is a general feature of

the irterface between two conducting media(10].
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The behaviour ofﬁr(x‘ 1Xg 1Y ) for the same case as figure 1 is shown in
figures 2,3 and 4 for different locations of the particule 2 in the RHS of the

membrane.In figure 4,the correlaticns are almost thcse of the bulk phase(s§]

Pt ) — = (&) emp [caLvnte gt @u0)

Because of the fast decay of the correlation function in all directions
the correlation functions will obey the theorems concerning the nconexistence
of multipoles ,that is any finite size fixed multipole will be perfectly

screened[16) .In aprendix B we show explicitly that both the monopole arnd

dipole sum rules are indeed satisfied.

4- POTENTIAL DROP AND DIFFERENTIAL CAPACITY

a) Potential dreop

The potential drop across the.inter face A\F = \-r(“\ - ‘-f(-°° \

can be calculated by computing the first moment of the charge orofile

Mp = tne [ xfpor-2ldn + [xfper-mian ] @)

The integration cen be performed very easily for me=l,with the explicit

result

A\F (m.(\ = -.% tn éo (6.2\

Femembering that g_ was introduced as the ratic of the fugacities
on beth sides of the interface,it is evident that there must be.'a relation

connecting the potentialldrop Bv.r to 3‘ .Indeed we have

302 &p [Llu-pe-edP)] - (41)

where f“ and qu are the chemical potentials in the two bulk phases.For

r =2 one has

/.(‘-/uz = _Q_‘ 4n s (“"’\

2 <,




hence (4.3) becomes %e a m esmp (-2 A“{’/e\ (s) x
- Relations (4.3) or (4.5) reflect the fact that an impermeable

membrane renders invalid the internal thermodynamic equilibriuui condition

Syt @ Y(-w\ = f&, + € Lf@'”\ (u.e
In the permeable interface case (4.6) holds [l7] so that necessarily g.sl.
This explains the results found above for the one and two body density
functions. .
It is now clear that our model behaves like an ideally polarizable
interface.Wwhile in the permeable case the potential drop always satisfies (4.6)
this is not true anymore for the present model, and bc( can be considered -

as an external variable:For a given value of AY,we compute the density

profile from (3.4) and then, the surface charge density from the
electroneutrality condition (3.10) .0n the contrary, in the“brimitive"
electrode (a plasma near a charged wall) the surface charge is the natural
external variable.This is an interesiing feature of this microscopic

model which compares well with the experimental situation where the potential
drop across the interface is fixed externally.

The approximation of section (2-b) gives the following expression for Ay

A\f s AY" + ‘_z‘. 2(%\71. x (v-v;/."\ - (%\'/t x-éo_v;/“‘\} (‘.3)
where A‘f" is the potential drop of the MFA. .
A\(° = -.‘Sz_.'(n. [ x(rﬁ;‘l,\/m,] (1‘09\

(4.7) dces not satisfy the exact relation (4.5).

Pigure 5 shows the relation between the potential drop and the

surface charge for the primitive electrode and for the exact solution of
the full coupled model.In the scale of the figure,the MFA ,approximation (2-b)
and the exact solution are indiscernable.However,the potentials of zero
charge are zero for the MFA ,.142 for (2-b) ,and .l14 for the exact solution.

For negative charges the behaviour of the primitive m~ 21 '!s totally

different from the coupled model.
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P) Differential capacity.

A quantity of central interest in experimental electrochemistry is tne
differential cavacity.This quantity has often been used to characterize
the polarizasle interface. It is defined by C = M

by

Since from (4.5)
:Dl‘ 2 = 2_"'.‘: 302.“: (L.g\
' (bb‘f < (DSO
we can calculate C as a function of‘g and hence as a function of
[ 4

the potential drop AY.Using the electroneutrality relation (3.10) and (3.4)

we find +9

C (N{\ = Qe 2, / X dé (4.10\
" =% [3.+ X&)

For m=1 and B&fao (S =]), the integral can be performed explicitly
L

and gives
490
o > r * "' ‘:..@.— (¢~”
C;_‘cb&f~'\ - ;é; JC; [}rjcéﬁﬂ < e ( )

In fiqure € we show the dependence of C with the potential.It is amusing
to note that the shape of the curve has a hump instead of the usual 4dip
of the theory of the diffuse layer [18,1°%).This hump is present
in many experimental curves, and has generated considerable controversy
about its origin.The explanation of the hump in our model is based
on the fact that because the two sides of the interface have.always
opposite charges, the mobile ions on one of those sides are pushed
away from the interface.The distance between the center of the excess
charges of the positive and negative sides of the interface will increase
with the charge (or the potential).The capacity is therefore maximua when
this distance is smallest,which occurs near (but not exactly,except in the
case m=1l) the point of zero charge (p.z.cC).

In the MPA the capacity curve has this same gualitative behaviour, but

notice that this effect does not exist in the primitive electrode

( C->00 for M{->-ao).




S- THERMODYNAMICS AND SUM RULES ' |

In the particular geometry of our model, the excess Helmholtz free

energy of the system can be separated ,for large Rn , into a bulk contribution

which is proportional to &: , and a surface contribution which grows as 31

F = ma,‘f:‘ r R L 4 0@\ (57)

e
where
»
_'f s Tm F&
e . R0 TRS
ard . 6
- R )
L S
f = '('m 'F“‘ -tal fm
R,“>oe 2R,
In the MFA the surface excess free energy is
L 3 t 4 S
- . s.
_fo = ft + jﬁ *L" C 2\
whgre [14] ' . czdi;,
s .
= %, - et § o .// A
fa -7?‘“‘ .‘_‘;:. [ t + 3..;:. + J’EZ, J de ‘{n [erscz.( \] (s.%\

(24,2 ad we@)o

(In [14) the first term of the right hand side of (5.3) does not

exist because Smith considers the excess free energy caused hx the

increase of the surface cha:ge‘density from 0 to - % +while keeping

the number of particles constant)

For the coupled system we have

f‘--' fk + AFS CHA - ]

s .
where ng is given by (2.37).

a) 3ur£ace tension and Linmann 8 eguation

Consider now the derivative of the surface energy with respect to




e =

. 3
the surface charge density l—‘ﬁ

(%)
From [14), we know that
~£ o
2= = - +eb (s.s)
YN [em Ha '

where L(f" is the potential drop in the MFA,given by (4.8),
For a charged fluid in the presence of a charged hard wall,relation
(5.5) is merely a consequence of the linearity of the Bamiltonian in the

external field due to the charge density on tl'ie wall [14,20)

FIE) = H(Eao) + E Z ex, +background term (s-¢\

For our model eq.(5.6) is not an exact one because we are ignoring
fluctuation terms due to correlations of charge distributions across
the interface.Indeed (5.6) is the MPA Hamiltonian.

Now,from (2.37) we have

’D_Ai‘ = - 1 3°+z(r({/4.\ _ tn (3t X(‘rﬁ, - 2
%\ 2{ [ :x(?{;&.\ } [ 3. HZ’ fz'g“[)—,(;[‘-‘]

(s.3\

where we have used (2.34) to elimina;e ?_3& .

Hence 'bq-
’Ei‘ = - ° e" {2_ t o
.b(%\ = j‘l /"4 +QAQP + -{ '(’L [X-(: 4'\] = /“2"‘/“‘.- —g— 'fn (g/m\

(5.¢)

and using (4.5) we get finally

..-P_is
(%)

= f‘z'f"t'*ehtf (5.9)\ !
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the

which is similar to (5.5) ,but where the free energy anéy;otential drop

are now the exact quantities,rather than approximations.
Therefore,the fluctuation terms neglected in (5.6) make no contribution
to this thermodynamic relation.We remark also that for the permeable
interface,because of (4.6) ,eq (5.3) simply means that the system adjusts
to minimize its surface free energy.

As shown elsewhere in [21] a relation of the kind of (5.3)
implies the Lippmann equation of electrochemistry [18].

Consider the interfacial tension X of our system,defined by

¥: (%Em\)y.- T U a (5101
AP Y ’

where Uﬁ'is the volume of the system,A is the area of the interface,and Q

the surface charge ( Q=edA).We have the following relation between Y and JCS

¥ 2 e - e e

{note that r and Jf‘are identical only when 0" =(0) .Eence

$
tﬁ!: = :E!i + /gfif‘l -e A#D - T 11Eﬁf = -~ E% b
%) %) |
(51
where (5.9) has been used .We finally obtain, considering bnf as our external

variable
télf = -~-eT (13
Dby T
which is the standard form of Lippmann’s equation [i3].
We note that we have given here a statistical mechanical,microscopic

derivation of this equation,for this particular model.The usual

proof of this equation involves only thermodynamic arguments, although

there have been recently several attempts of microscopic derivations [12,22-24]

et ——_S——— B | -]




o

Quite surprisingly it can be shown analytically,that tbe_
approximate surface free energy (2.40) also verifies Lippmann’s equation.
Figure 7 shows the dependence of the surface tension

calculated from (5.4) and (5.41) with the applied potential.This

curve is known to the electrochemists as the electrocapillarity

curve.As in the case of the differential capacity,this curve also

mimics real systems behaviour with the characteristic inverted parabolic shape
Since Lippmanﬁs equation implies that the surface charge is the slope

of the electrocapillarity curve the point of zero charge corresponds to its

maximunm.

S-b) Other sum rules

For an OCP near a charged hard surface the following sum rule is

true [21]
s o>
?_f_ = -e_/ [c'a(x\— \f(“\]flx (5.1¢)

¥ A
where J° is the bulk density and 19(x) is the local electrostatic
potential.

In the present model it is cléar that relation (S5.14) holds for each
side of the interface separately in the MFA. We show in appehdix C that
it is also true for the exact solution.Hence we have

f

N,

2 ° o

[ o5l |

. - (5.1
F iJ/ : o :

&2 - e x -¥r 1d

'bd'_ o {f«’ T ]
vhere we have used Poisson’s equation.These are new sum rules for this model

involving the second moment of the charge density distribution.
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These relations are also valid for the case of the permeable interface.

When m=1 (%, = o, = o ) we have the simple relation

2
£* " _
=2 - cz‘z; xtgp(,) -}m]éx (5. 16)

A last sum rule is the so called % contact theorem”.Por the permeable

interface it has been shown that [17]
?-P, = %. fpeon - peol] - g [cp@) = pe] (s.17)

where P, and gz are the bulk pressures on both sides of the interface.

The presence of the impenetrable membrane modifies this relation.We now have

P-P, = %! [v.f(o\- ‘F@“"J - e;ﬁ:. [r(o\-y@oﬂ + ‘Q'T'fﬂct’\-ﬁ(ﬂ] (5.8
as shown in appendix C.Note that the surface charge density does not appear

explicitly.When m=1 (5.1%) gives

AQESAQ R —,3.%'- Bps = 3 ts, 5.9\

which is equivalent to (3.8) the equation for the jump in ion density
at the interface.

After some straightforward, but lenghty manipulations,it can be
shown that the approximate solution (2-b) has the rematkable.feature

of satisfying both (5.15) and (5.18).

5~¢) General derivation of the preceding sum rules. .

The sum rules of the preceding section are also true for the

general ,three dimensional interface of two OCP at an arbitrary coupling.

This can be shown by an extension of the argument used elsewhere (25]




which consists in studying the variation SF: of the PFelmholtz free energy

produced by a variation of the background density nlF)lor of some

&
external one body potential \f{%ywhile holding the number of particles
and the temperature fixed.

From the definition of the Helmholtz free energy we have in general

SF = _/_,o(:') ﬁf"’&-’\a: - e_/fc-‘-') Jn(F) dF (s.ag\

The second term of the RHS of (5.20) is due to the constant neutralizing
background.

Consider now a system consisting of two slabs,one of background
density %: extending from -L<x<0,and another slab of density %t going from
© T
0<x<L.Eventually we will take the limit L->@0.The impenetrable membrane

is located at x=0 and can be represented by the external potential

- 0O % >0
e |

o % €0

(},1i\ for all particles of the left hand side
e o X >o
‘rz.(f\=
+ 20 % £ o

for all particles of the right hand side

The electroneutrality conditions imply that
N, = %('_G(,L-ﬁ‘\ ‘
8 et s o) (s.22\
N 2 (Rl + O
RN
where A is the area of the interface.

Consider now the variation SF'in-the free energy when the position of

the impenetrable wall is displaced by an infinitesimal distance §.
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while holding A,N"N:, ™ and T at a fixed value.
The left hand side now goes from -L to SL and has background Jensity ;L—(“"*‘Y‘l\
The right hand side extends from L to L and has density #‘L' S.‘:.\

Since A,bi‘ ,N:, and @ are constant,we have

o, SL o+ S-«‘L = SL - Sd,_l- =0 (s.23)

and the'volun{es'of each side of the interface change by the amount

S = -8J0, = ALL (5.2 \
(5. 20) becomes
0 co +02
SF = ) O - dy + )g w’;\.lx -~ e (x\ ;“(’\47(]
A[_[‘of(x -cp‘.m ¥ ‘éf@ P ¢ __/““F

Wwriting

Y, ) opf-A ‘f,utx\] X <o
PO : (CRIAN
j,.("\ erp -pr f-f:':x\ } X >0

and using (5.23),we find after some calculations |
OF = - ALT [ﬂ(o\ -ﬁ(c\] §. - eA §_:. { o, [tf(o\" Pe -, ftf@\-c’)(i»w\]

(523) -2 _Z:['f(x\- PeoYdx + S .4 L[upm - nf(a-»\]-"x}
Introducing the functions %}x) is a standard device in the thecry of fluids
with hard repulsive cores.The essential feature of these functions is that
they must be continuous across the inter face.

In equation (5.27) Qe see that the free energy variation has a
volume and a surface contribution,which are readily identified with

thermodynamic quantities:

$Fa -7 3, - §J, + ASF (5. 28\




fhe presence of the surface term in (5.28! is again a manifestation of the

existence of a neutralizing background.A similar term will also be present
if one of the sides is a quantum mechanical jellium [25)

From (5.23) and (5.24) we get for (5.28)

' 3 s
§F = - AL (R-R) - ALk [« _g%f' -“;-?3{;] (5.29)

Comparing the volume term of (5.27) and (5.29) we get the contact theorem

(5.18) . The surface term yields

YA YL y Ndx » €dn [ fioee) - ome
W3-« 3 ‘;“"A[‘f’"‘“‘f“ Vdx S;ci!ftfc\ Pees\]dx
(s.30)

This relation is weaker than (5.15) .We conjecture, however, that relations

(5.15) and (5.16) are valid for all couplings in twoc and three dinensions,

6 -CONCLUSIONS

In the present paper we have solved exactly in two dimensions
and for a special temperature the statistical mechanics of the interface
between two charged one component plasmas separated by an impermeable
membrane.The interesting fact about this model is that it treats the
entire double layer,the*metal ¥ and the “electrolyte® side,on
an egual footing,and it can be switched from the polarizable té.nonpola:izablc
behaviour.The above calculations could be easily extended to more complex'
sitvations.For instance in Appendix D,the case when the membrane itself
has a fixed charge density is discussed.

Another solvable case is that of several contiguous impermeable

membranes separating plasmas of different charge densities.




From the microscopic point of view,an important result of this paper is that

the existence of an impermeable membrane is strictly equivalent to a step
variation in the fugacity of the mobile ions.For the permeable membrane
there is no discontinuity, and therefore the potential drop across the
interface is constant.This is perhaps the first rigorous illustration

of the fact that an ideally polarizable electrode exists only when there is
no miscibility between the two phases.

In conclusion the behaviour of this mocdel exhibits a remarkable
ressemblance to that of real electrodes:the potential drop across the interface
is the natural external variable (and not the surface charge density\
Lippmann’s equation is verified, the shape of the electrocapillarity
and capacity curves shares common features with experiment.

The remarkable fact that such widely different systems have similar
characteristic behaviour,seems to im?ly that they are not very sensitive to

the structural details of the interface.
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APPENDIX A: ELECTRONEUTRALITY CONDITION

Consider the left hand side of the interface (x<0).From (3.4)

we get
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Then, using (2,34) we regdily obtain the electroneutrality relation '(3.10) .

The procedure is analoqous for x>0.




APPENDIX S:MULTIPOLE 35U RULES

The first and second multipole sum rules are

Sodx [ dy poe,xg) s - pey @A
‘ and

../ 4*;/45 (";"‘u\f(.,, ,_,;\ (o) (R.2)

!

Consider first (3.1)

From (3.15) we have

SR a T e t m, (é';-l"z\
g;[:lx‘,_/j\’ AT "}\‘ '%?J("‘t\ _/j"z 3("1\:&&: dk, 'R(QQOI\I:'J e J

| z - é‘-‘-{-t, g [ ey ge) / ae REY .3\
! where ! =63 : - 08 ‘
| R (H g = FOrdT,
30“5‘("‘3 t me" etj % ()
Hence
- ze-xji'i. - 2%, -tha‘f_d
I--?:.‘f 3(::.\_/&& e {3,_[4x e
R

{3, et He a m e"a*te.g’c ]t

?.c\ % -2&x J‘l
*_/ éxz 3 B
4

Performing the last integration we find (8.1). (

Consider now (3.2) ,which, by use of (B.1l) can be rewritten

ne [ [ty n gy e e @)




We have

1' = - %.(‘ 3(!.\/ 4"& TS 5("1\/ d?’R (‘"\ CB‘\ ‘
x 1y |
2
-t TS ) 24, (4 + £
a - B—: 36‘1\./ d& e 2 e [ -/dx?.xl ) m'
L T [3,erfccre +me a-J:@nH]‘ '

meit ~, (1yt ;‘é': C
+ & ‘J/dx ]

The last term between brackets is the derivative of the denominator.

Integration by parts finally yields (B.S).
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APPENDIX C:VERIFICATION OF SUM RULES

We first consider the sum rule

S [ ]
'.b.-f. = e‘/' x‘[fm-.:‘_}]dx (c1)\
(b"l [ . ™

from (3.4) we get

J= e"_/g;"lfc*\-%]é"
(-1t
L moeafc fmble - 3 el )
H G" c(m s2mE 2 mb | (c.z
r/dl. [enfe (i) (1o2mtHY - 2 ¢ ] mu‘gc(mf}é"")k: 2 eafe )

Sd‘ﬂ:
which can be written
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8-! r / S“ﬁ (e ) " ] [ ™ t{c(mﬂe -i)e?, Sougc(-l-\ ]

Now we split the damain of integration In the two intervals

[ -o0, 0’{2'] ol o'ﬁr;. ,00] ,and we regroup the terms to insure convergence

when t->-~0eo.This yields
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Using the relations (2.37), (5 3) and (5.4), which definefand

\ (e

-

the saddle point equation (2.3/) to eliminate (_3.3‘_ it is easy to
: ) Q“_
see that (C.4) is nothing but ’D.‘f .
-

The calculation is similar for the left hand side and also for the

symmetr ic case m=1l.




We verify now contact the theorem (5.18):

From (3.4) we have

Ie'd._/ox[foc\- 2 Jdx (c-s)

S yer- pe)

mt-t)b ‘
n & e 20

m &Jr. (X2 @‘.g\r+ 3o AR

= ""/ [e-:.gqeh.s..,]

230
- u. terfe (-t e 1 - )t ]él—
j [ c.g' ¢ )+ ] [ e NI

which can be written
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After similar manipulaticns,we get
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where we have used

J ¢ [e:fc (mh) + e::fc(:-\-ujdlr = _di(l - 5‘5\ (c.3\

But from (3.4) we have also

.. 2 +Se N
krfper- pen] = %e? (5_-,\/ e "
34
T N C.1o
% m efe i) IRy 3, efe-r (e 0}
Adding (C.8) and (C.l1l0) we finally recover the contact theorem (5.18):
("{:f for® =2 \
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APPENDIX D:CHARGED MEMBRANE

The model proposed in this paper can be extended easily to the
case where there are fixed charge distributions on each side of the

interface.

Considei;for instance, the case of two charged rings,one of radius
R“-t and surface charge density ev:/m .and the other of radius R, + &
and surface charge density ecxﬁt .

Let &->0.This is equivalent to say that the impermeable membrane

has now a charge density e = S0+
T

The calculation follows the same line as before with only some
minor changes (see also [11]) .The electroneutrality conditions (2.1)
and (2.2) become

z,

(2.1 \
N, = (sz'atl\“; - G;.R't

and there is an extra term
’ N
g
V 2 -e'e R 2 n ("-’\ (D2
4 , —_—
e Mot R,
in the expression (2.3) of the potential energy.
In (2.6) we now have
; 2
Negz n + (-« )R, + 2R, @13

and

instead of (2.13).




Fur thermore we ncw have %0; instead of G” ,in all the integrals

over t.For instance,the saddle point eguation (2.34) reads

X & - [ 3 e en

o ' ) 2
4?-\. K *)+ So "'c'/.luu Xk
and is now a functicn of @° and O~ (and not only of 0—)
3; 4 2

The one and two body distribution functions are still jiven respectively
by (3.4) and (3.15) and all the sum rules hold.

Contrary to the case of the permeable interface [ll],the potential
drop ,b&r across the interface, depends on the distribution of charges
at the interface:the surface charge distributions of the interface are not

screened anymcre.
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FIGURE CAPTIONS .
Figure l:Density »orofile for m=0.5 and ®:-1.Units are e=%=1. (3’05 1,.3.!2.'\
Fiqure 2:Level curves .of the two body truncated density correlation
function.Same case as Figure l.Particle 2 is at the wall on the RHS.
Fiqure 3:3ame as figure 2.Particle 2 has coordinates (.5,0).
Figure 4:5ame as figure 2.Particle 2 has coordinates (1,0).
Figure S:Potential drop versus surface charge density.The primitive
electrode is compared to the full coupled model. (m=.5) |
Figure §:Differential capacity versus potential droo.Comparison of the
orimitive electrode to the fuil.coupled model. (‘m=.5)

Figure 7:Electrocapilarity curve.(m=.5) . (P-Z-e-. ] .llh\
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ABSTRACT

A microscopic mode! for the metal-solution interface is presented. which, for the first time, includes
both a non-ideal treatment of the metal and a molecular model for the solution side. The metal is
described by a jellium model including electron-ion pseudo-potential. The solution is treated as 2 mixture
of hard spheres with point dipoles (solvent molecules) or point charges (ions). The statistical mechanics 1s
solved using mean spherical approximation. No a prion separation is introduced between compact and
diffuse layers. A simplified version of the model is applied to the case of Hg-DMSO systems.

- INTRODUCTION

The classical theories of the ideal polarized electrode are based on two premisses:

¢2) The metal has no direct effect on the differential capacitance C, although it
does determine the potential of zero charge and affects the orientation of solvent
molecules. From an electrostatic viewpoint, every metal acts in just the same way,
the only interaction being that of ideal images.

(2) The solution side has two layers: the external, or diffuse layer, which can be
described by such simple models as the Gouy-Chapman (GC) theory, and the
internal, or compact layer, which in the absence of specific adsorption is formed
only by solvent molecules.

These two premisses are now being challenged. The recent important progress in
the theory of metals and metal surfaces makes it difficult to admit. that the metal is
totally unresponsive to changes in the electrolyte. The surface charge distribution in
the metal must respond to local changes in the electrostatic field produced by
modifications in the ionic and solvent distributions. This will surely produce
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contributions to the differential capacitance that will be different for each metal.
since the response to an external field is different for each metal, and depends on
details of the electronic structure near the surface. In previous work [1-3] an
estimate of these effects was given. The solution side was represented by a layer of
dielectric material. In a recent publication, W. Schmickler [4] has discussed a similar
model. His conclusions about the role of the metal are similar to ours.

On the solution side, recent advances in the treatment of molecular solutions [5.6].
i.e. solutions in which the solvent is not treated as a continuum, have made it
possible to treat the statistical mechanics of the solution side of the electrode
interface. Although the approach, in principle, can handle realistic models of
solvents and ions, the initial work has dealt with a model in which the solvent is
represented by hard spheres with point dipoles {7]. This work has revealed two
important deficiencies of the classical treatment:

(1) The separation of the inner and outer layers for the solvent orientation process
(or better polarization) implies a violation of Maxwell’s equations. The dipoles of the
solvent are oriented wherever there is an electric field, i.e., throughout the entire
electric double layer.

(2) The use of local dielectric constants is also unwarranted. Although this is a
much more subtle problem, recent theoretical work [8] has shown that dielectric
constants have a clear meaning only for large systems (thermodynamic limit) and
not at the molecular level. The polarization is the local variable that is required.

In this work we present a comprehensive theory in which all of these concepts are
included. In section (I) we review the models of the metal and solutions sides of the
interface. The potential drop and capacitance are then computed using a simple
GMSA (generalized mean spherical approximation)-based model which has the
obvious advantages of analyticity and simplicity.

In section (II) we discuss the electronic density profile of this model. We then
consider a model in which the physical parameters are those of an alkali-ion in
DMSO in the neighbourhood of a mercury electrode.

In our model the point of zero charge is not the point of zero potential (which is
the case in the restricted primitive model): we also discuss the change in the surface
potential of the metal induced by the presence of the solution. The influence of some
of the parameters, and detailed comparison between Hg and Ga electrodes, will be
discussed in future work.

In section (V) we examine possible improvements in our work.

(I) MODEL FOR SURFACE INTERACTIONS

Consider a plane, ideally smooth electrode, where : is the distance from the metal
surface. The buik metal is then given when z = - . For the metal we use a jellium
model (with inclusion of the electron-ion pseudo-potential). The details are given in
ref. 9, but for completeness we will give an outline of this work. The metal ions are
taken as a continuum of density p for z < 0. In other words

p(z)=p8(~z)




where 8(x) is the Heaviside function
f(x)=1 x>0
8(x)=0 x<0

The electronic gas is free to move. but its equilibrium distribution n{:) will be
that which minimizes the total surface energy of the system. The electron~ionic
background interaction is given by a pseudo-potential. The properties of the electron
gas. such as the kinetic, exchange and correlation energies are computed using the
local approximation.

On the solution side the ions are represented by hard spheres of diameter o, and
‘charge +e *, and bulk density p,. The solvent is also represented by hard spheres of
diameter a,, point dipole 4 and density o,.

We assume that no chemical reaction can take place, and no miscibility occurs
between the phases [10]. However, this model does not exclude the existence of a
surface layer in which all the particles are present. In fact, the existence of this layer
is consistent with contemporary theories of the metallic surfaces. Any model which
does not include this layer leads to predictions which are incompaiible with
experiments [1.11}].

In our model, the electrons can diffuse into the icnic solution. In actual practice.
calculations show that both in the interface with the vacuum [12], or with a dielectric
film [9]. the electron density spill-over is very small. However, the change in the
spill-over with the electrode charge will give a direct contribution of the metal to the
differential capacitance [1.4].

The metal electrons in the solution are subject to electrostatic interactions
(electron-ion and eiectron-dipole) but also to a repulsion due to the core electrons
of ions and solvent molecules. These are represented by the Harrison repulsive
potential (9].

There are several parameters in our model that are fixed a priori, but which
should come out of a first-principles calculation. One of these quantities is the
distance of closest approach of the ions and solvent to the plane z = G (the metal
surface). We will assume that it is just the sum of the molecular radius of the solvent
or ions (which for this simple model are considered to be equal) and the radius of
the metallic ion. In reality, this parameter should arise from a self-consistent density
functional caiculation [13).

In short, we will assume that there is an ideally smooth wall, located at - = 8.
which cannot be penetrated by either ions or solvent molecules. The distances of
closest approach are

Zion™=8+0/2 for ions
Znot =8 +a,/2  for solvent molecules

* We use Bohr atomic units: e = eiectron charge: m = electron mass: e = m = |. Bogh radius: a, = 0.0529
am. Energy unit: | Hartree = 27.2 eV.
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There is also the problem of surface smoothness and structure. From recent
experimental evidence, it is known that certain metal surfaces are subject to
structural changes during chemisorption processes. In these cases the surface over-
layer changes its structure. It is quite conceivable that in an intrinsically more labile
environment such as that of liquid metals, the metal overlayer would also respond
structurally to changes in potential.

Furthermore, the question of surface ripples (capillary waves) at the interface,
and its effects on the structure and thermodynamics of the electrode is not discussed.
We hope to address these and other questions in future work.

Summarizing, the ions and dipoles in the solution are not seen simply as a hard.
charged surface, but rather the sum of a charged surface (located at § + 0/2) and a
distribution of electron density beyond the plane of closest approach.

Even this simple model is not easily amenable to a complete numerical calcula-
tion. We will, therefore, in this first communication, use a simplified theory that has
the advantage of giving explicit analytic expressions for the physically relevant
quantities.

(I1y A SIMPLIFIED MODEL

For simplicity, we shall discuss only the restricted model in which o, =a =g _=
o, = ¢ (although not in published form, the results for o .= 0_= g, are also availa-
ble). We also neglect the effects of the electron density on molecules and ions in the
solution. We shall leave the discussion of the validity of this assumption for the
future (see also ref. 3 for a first discussion of this effect). The solution is represented
by the MSA [5,6] which is only qualitatively correct. Near a charged interphase a
simplified theory, valid presumably for dilute solutions, has been developed by Blum

ionic density

——

x
electron density
\

o § dizdew, 2

Fig. 1. Simplified model of the interface: 8 = position of the ideally smooth wall; o = diameter of the ions
and solvent molecules.

Sy~ §
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and co-worker (7]. In this theory, the dipolar interactions are decoupled from the
ionic distributions, which are given by the modified Gouy-Chapman (MGC) theory.
We are thus satisfying the electrostatic part of the contact density theorem. The
simplified model of the interface is given on Fig. 1.

The charge density profile is given by

g,(z)= —xgque T (n
where x is Debye's inverse length and
d,=8§+a/2
The total excess charge of the solution side is
®
‘Is'f dzqi(z) = —qum (2)
d;
The electronic density profile is postulated to be of the form [1,9]
a(e)=all -] z<z o
=(n/2)e" 70 232

‘where n is the bulk metallic electron density. Clearly, the total excess charge on the
metal side is

au=" dzlo8(=1)=n(2)] = -nzy (a)

This last relation also defines z,.

For a given value of a, and g,,, the charge and polarization ( P(z)) profiles are
computed from the theory {7]. These in turn yield the potential V(z) and electric
field E(z), which are obtained by solving Poisson’s equation

22 0 Bt po(=5) ()
+0(z —d,){ Knzye "I~ aPa(:) }] )

The potential V() is continuous in all space. Because of the discontinuities in the
density profiles, V(z) has a different form in the regions

(1) —=<zg0
() 0<z<d,
(I d, <z<w

The solution of eqn. (5) is straightforward, and is explained in Appendix I. The
total potential drop across the interface is

( ‘o)

AV = V() - V(- co)-——[azo(ad —azy) +—o—~1

4mnz
+ [

+4x } “p(z)dz (6)

At
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The integral in this expression is explicitly known. The reader is referred to ref. 7
(eqn. 15) for the derivation. The result is

*® -
u[d' d:P(:)-,h_r.x?)P(s)

The Laplape transform i’(s) is
“-~up, ( Brdrqy ) 1

B(s) -hf:d: e P(2) =

3 3 (x+s)A(s)
.é‘i _.ia__ﬂl .Bi Le~ 1)
x B;{l 2 Buz[ﬁ,’+2¢'(s)]} e (7)

Here p, is the bulk number density of solvent molecules. The coefficients 8,, 8, and
B, are functions of the bulk dielectric constant ¢ of the solvent. and are given
through an auxiliary parameter A

3A 3 IVI+A
B AT Ae(3)a ®
The auxiliary parameter A is computed {rom the equation
e=N(1+A)/16 (8)

The functions ¢,(s) and A(s) are defined by

o.(s) = 1/(s0)'[1-so—e"]
A(s) = 1-=2¢(s) (N =1)=dg,(s)(N = })

with
1 1
()=o) 3] (9)
Then
© —4mnzg e—1 xo 1
4 A dzp(z)-_::_—--T[l+T(l—A)] (10)

Substituting into eqn. (6) yields
nzg

i e (0 o

AV = =22 2nnzd +

at the point of zero charge (z, = 0), this expression simplifies to
AV = —47n/al (12)

The potential drop across the interface is a function of only n and a, which are
metal parameters. This, however, does not mean that the potential AV is equal to the
surface potential of the metal-vacuum interface x ,,, since a is also a function of the
solution parameters. In the limit a = oo the electronic profile tends 10 n(z)=

L3
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It

n8(z = 25), and then eqn. (11) is not the same as the expression given in ref 14.
There are two reasons for this discrepancy. First, the term 27nz$ does not exist in
ref. 14, because now the charge is not localized at the plane 2 = 0. Secondly, the third
term in eqn. (11) is not that of rel. 14. However, if d, = 0/2 then they are identical.
This means that an additional capacitance term appears because of the shift § in the
metal background profile.

The differential capacitance of the system is

I VN 1N
¢ 2g, g N9z,

using egn. (11), we obtain

3 3 ad,
—4ﬂ—z[l/a } +4nrz, 37 (14)

In this expression the first term of the right-hand side is the result of the MSA
{7.8]. If the solvent molecules are shrunk to point dipoles (o, — 0), one should
recover, from eqn. (14), the differential capacitance of the MGC theory. Otherwise
[14], one can define the effective dielectric constant
f-— (15)

I+ et
A
which then yields the MGC result with the effective dielectric constant &. We must
remark that in spite of the formal resemblance, the physics is different, since the
solvent is polarized throughout the entire electric double {ayer.

The second term of eqn. (14) arises from the fact that the electrode charge is not
localized at z = 0. The next term is due to changes in the dipolar surface layer of the
metal as a function of the excess charge. And the last term reflects the fact that the
distance 4, is also a function of the excess charge. A detailed discussion of this fact
can be found in ref. 3. At the point of zero charge this term vanishes.

Because of the intrinsic limitations of the MSA, we will limit ourselves to small
surface charge densities around the point of zero charge. Thus, for a given value of
d,, we only need to compute a for the differential capacitance C.

(111 ELECTRONIC DENSITY PROFILE

. The ansatz (3) on the electronic density profile is particularly convenient since
n(z) only depends on the parameter a. We will compute this parameter by
minimizing the surface excess energy U,. The kinetic energy and the non-coulombic
part of the electron-neutralizing background are not affected by the presence of the
solution, and therefore we use the expressions given in ref. 9 (eqn. 14 with a = 3),.

|
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Upn+ Ui+ Uy = f[ - 1.6423 n¥/> +0.25037 n'/? + 0.006584]

+an(log 2)/72 . (16)

The pseudo-potential contribution U, to the energy is given by (eqn. 10 of ref. |
with a = 8)

2 ~aRy
Upg = 2on _[e"""' -2 (AORM + l‘:" + 1)(e“° +e"%%)
2 2 Ay
+a(|z°|+A°zo/2—A0RM/2—RM)]+7 (17)

where 4, and R, are the pseudo-potential parameters of Heine and Animalu (see
also ref. 1).

The electrostatic energy is computed from the charge and polarization profiles,
and the potential ¥(z) which has been calculated in Appendix I. We find

2
mn
U, == —8azs8(az;) +5 + dazs e~ =4~
2a
2az, e M=)

~4 e~0l%l
4emee l+x/a

2mn p® )
— s —a(1=124)
- /4. dzP(z)e +C, (18)

The last term C, consists of the remaining contributions to the energy which are
not functions of a, and thus irrelevant to our calculation.

The penultimmate term in eqn. (18) represents the interaction of the electrons with
the local polarization of the solvent molecules in the solution. This contribution is
easily calculated from the Laplace transform A(s) (eqn. 7):

- 222 ["4sp(s) evsewm - I ewep(a) ()

There is also another contribution due to the repulsive interactions of the
electrons and the electronic clouds of the ions and solvent molecules {9]. These
interactions are represented by Harrison’s pseudo-potentials, with parameters A; (for
ions) and A, (for solvent). This interaction is independent of the ionic charge or
solvent dipolar orientation, and because of the use of the MSA, it will depend only
on the total density profile pg(z). Since all the particles are hard spheres of equal
diameter, a single parameter A (a weighted average of A, and A ;) will be enough for
our purposes. We obtain

U.-derfdz’n(z)&(r—r’)po(z’) (20)

- k!p! +2\p.
Ps+ 20,

AL,
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Upa+ Upse+ Ui = %[ —1.6423 n%/? +0.25037 n'/? + 0.006584)

+an(log 2)/72 . (16)

The pseudo-potential contribution U, to the energy is given by (eqn. 10 of ref. |
with a= 8)

2 -—aly, ’
Uy= 2mn .[e"‘"‘ . T (A,,RM + % + l)(en. +e~%%)
A

where A, and R, are the pseudo-potential parameters of Heine and Animalu (see
also ref. 1).

The electrostatic energy is computed from the charge and polarization profiles,
and the poteatial ¥(z) which has been calculated in Appendix 1. We find

2 .
U, -;—",-[-Sazoﬂ(azo) +5 + dazy e~ h "
a

2” e"(‘!"G)
-4 o=l 9
4em |+x/a ]
_2m —ete- ) '
- f:dzP(:)e =4 C (18)

The last term C, consists of the remaining contributions (o the energy which are
not functioas of a, and thus irrelevant to our calculation.

The penultimate term in eqn. (18) represents the interaction of the electrons with
the local polarization of the solvent molecules in the solution. This contribution is
easily calculated from the Laplace transform B(s) (eqn. 7):

I gy e B "

There is also another contribution due to the repulsive interactions of the
electroas and the electronic clouds of the ions and solvent molecules [9]. These
interactions are represeated by Harrison’s pseudo-potentials, with parameters A, (for
ions) and A, (for solvent). This interaction is independent of the ionic charge or
solvent dipolar orientation, and because of the use of the MSA, it will depend only
on the total density profile py(z). Since all the particles are hard spheres of equal
diameter, a single parameter A (a weighted average of A; and A ) will be enough for
our purposes. We obtain

Up=Xfar dz'n{2)8(r = r')po(2’) (20)

= Agﬂ +2Ap.
Pe+2p.
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where p, is the dipole concentration and p_ is the (+) ion concentration. The
integration is easily performed:

U,-Zzﬁj;“dz e~ *i=flg (2) 21
'XT"C'“ﬁo(“) (21)

where 5,(a) is the Laplace transform of the total density distribution function
(Po(2) = py(2) + p(2) + p_(2)). We oObtain

(9)
Ug= po.’l.x.e-«d.-:.)ﬂ; ! (22)

2 (B¢ Y aQ i)

where B{ =1 +29; piM=ml-p; {f2=( +2/2) with
il 3

n=glputp.to)e

and

=/ \1/ () 2 () 1)2

Q(‘“)' 1= ’24’1(“)312 /(ﬁo) - 1277‘#2(")33 /(Bs)

The functions ¢,(a) and ¢,(a) are defined by egn. (9).
The total surface energy is then

Us-Ukin+ljue+(jinh+(jpl+z/u+ UB
Using eqns. (16)-(22) we obtain, finally,

A
i’z- Ci/a+ Cza+‘1—3[§— 2azy— [1 +=2(1 +aRM)] e~ Ru(e%0 4 g=%)
™ a «

-2aR,, +?[z +(az,) - (aRM)‘]]

E az a
+e- =20 + =22 4] =1
° {aé(ia) a=[ «+~[

) [’ - licl/x(?lﬁ*""“))”]} (23)

The coefficients C,, C;, E and D, are given in Appendix 2.

In eqn. (23), all the electrostatic interaction terms with the solution cancel at
zo = 0, the point of zero charge. The shift in the surface potential of the metal, when
it is taken from the vacuum to the solution is due to the electron-solution repulsive
interactions.

The minimization of U, then yields a. This parameter is then uséd to compute the
properties of the electrode with the aid of eqns. (11) and (19).
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TABLE |

Values of the profile parameter a (Hg) as a function of d, and X. For the bare surface ag = 0.901 a.u.
x 15 30 45

di=sR_+0/2 0.905 0.908 0.911

d;=0/2 0.916 0.932 0.947

Two of the parameters of the problem are free, and have to be selected using
physical intuition. They are § and A. It seems realistic to choose the value of §
between 0 and R, the crystallographic radius of the ions in the metal [9].

For water the parameter A has been estimated to be ~ 15. For DMSO we might
expect an even higher value since there are 54 electrons in DMSO against 10 in
water. In Table | we show 'the influence of X on a assuming that 4, = a/2 or
d, = R_+ /2. As expected, the repulsion term with the solution causes an increase
in the vaiues of a. This is similar to what we found previously (9]. In Fig. 3 we have
plotted the shift in the surface potential of the metal dx,, = 4m1(:-2- - :) calcu-

]
lated at the point of zero charge as a function of the distance d,. The corresponding

case of gallium for A = 30 is also shown.
The repulsion from the solution is not enough to keep the electrons in the region

}-axm/v

3 3 S 6 7 dv/au.

Fig. . Dependence of 8x,, on the paramster d, for different choices of X: (1) Hg X = 15: (2) Hg X = 30;
(3) HgA = 45; (¢) Ga A = 30.




] L 1 1

—
U S 6 di/au.
Fig. 4. Dependence of the charge spill-over 8¢ on the parameter 4, for Hg and Ga(AN=30 and c=0.]

mol 1),

z < d,. There is always a small charge spill-over, ~ &g, in the region z > d,.

-‘2-:-3-__1,-4.-: l
-8g= fﬁ drge a(e-2q) e -z :

In Fig. 4 we show 8¢(d,) for both Hg and Ga. The spill-over 8¢ is larger for Ga
than for Hg.

In the simple model presented here, this effect has been neglected in calculating
the charge distribution and the polarization in the solution. It is clear that this
approximation is less justified for Ga than for Hg. However, the mathematical tools
to include it are available and we will indeed discuss these effects in the near future.

The fact that there are electrons on the solution side even at the point of zero
charge, indicates that the solvent molecules must be polarized at the interface even at
the point of zero charge. Note that the ratio 3¢(Ga)/8q(Hg) is not simply the ratio
of the electronic densities.

The differential capacitances for the mercury electrode are given in Table 2. They
were computed from the curve AF = {(q,) by nume ical differentiation. With the
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TABLE 2

Dilferential capacitance of the interface C/gF ¢cm™? as a function of d, and X. The concentration is
c=0.1 mol1~'

A d,
] L 9
R, + 3 3 +0.1 am 3
1] 9 20.8 100
30 9 18.7 58.8
45 8.7 16.6 434

parameters of this article the zero charge capacitance corresponding to an ideal

metal would be

c [

XC €—-1
1+ 3 ( 1+ T)

We see that the total capacitance depends crucially on the distance d,.

When d, is large the value of C is greater than C; but the effect of non-ideality of
the metal remains small. On the other hand, when the distance of closest approach
decreases (for instance if there is interpenetration between the metallic ions and the
particles of the solution) this effect becomes quite important and the influence of X is
not negligible (for comparison the experiment value of 18 uF em =2 for LiClO, ions
(15]).

First calculations show that the differential capacitance for Ga would be greater
than for Hg, as observed experimentally.

=7.94 uF cm™?

-
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(V) CONCLUSIONS

We have presented a realistic model of the metal-solution interface, in which the

- metal is not an ideal smooth metal, but a jellium model. A simple discussion of this

model is given. The results confirm earlier calculations [1-4] that indicate that the
metal makes an important contribution to the differential capacitance C.

The solution side of our model is a mixture of hard spheres with charges and
point dipoles. No a priori separation of compact and diffuse layers is postulated in
this model, and it also does not involve the use of local dielectric constants (a
meaningless quantity). The calculations show that the solvent molecules are polarized
even at the point of zero charge. This is so because of the spill-over of electronic
charge into the solution, which produces non-zero electric fields in the metal-solu-
tion boundary layer. Although we have treated this effect only crudely, the recent
work on the GMSA [16] of the ion-dipole mixture allows a consistent calculation of
this effect. .

We also show that the distance d, of closest approach of the metal ions and the
solution ions is a crucial parameter in the determination of the differential capaci-
tance C. However, this is also a drawback since the fact that 4, is unknown makes
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the comparison of C with experiment a not very meaningful exercise. Indeed a value
of d| which [its the experiments could be found.

However, the model that we have discussed here represents the most comprehen-
sive one that we are aware of. We are undertaking a detailed study of the influence
of various parameters, such as ionic concentration, density and dipole moment of
the solvent, etc. on the differential capacitance. The results will be published in the
near future.
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APPENDIX 1

Electrostatic potential profile

Integrating equ. (5), obtain (also using egns. 1 and 3)
(a) For negative metal charge g, (2, > 0):

V(z)-—-z—"zle““"’ (-0 <2<0)
a
V(z)=2an(z2 —e** =% /a?)  (0<z<z,)
V(z)= me[:o(Zz —z)=2/aP +e ] (z,<2<d,)
V(z)= Zvn[zo(Zd, -20)—2/at+ e“‘""’/az] +4mwnzy/x
+4’rf:'d:’P(x') - 4":z°e"""" (z>4d,)
(b) For positive g (2, <0):

V(2)m ~ 20eetimte) (g <z<1,)
a

V(z)= -27n [(z -2, +2/a* - e"‘""’/az] (z2g<2<0)
V(z) = 2mn[24(22 - 20) = 2/a? + e~V /a?]  (0<z<d,)
For d, < z < = the equations are those of the case ¢, <0.

APPENDIX 2

We give explicit formulae for the coelficients of eqn. (23):

C, = —=(-16423n% +0.25037'* + 0.006584]
! ™

e O A S 08 R A S -

D

e wmaarie
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_l_logz
wn 72
A (1+2n)
2mn 0 2
(1-m)
8’y
kTA(2 +1)

These coefficients are computed once and for all for a given metal and solvent.

D -
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